Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Jan;26(5):511-32.
doi: 10.1111/j.1574-6976.2003.tb00628.x.

Mechanism of action of oritavancin and related glycopeptide antibiotics

Affiliations
Free article
Review

Mechanism of action of oritavancin and related glycopeptide antibiotics

Norris E Allen et al. FEMS Microbiol Rev. 2003 Jan.
Free article

Abstract

Oritavancin (LY333328) is a semisynthetic glycopeptide antibiotic having excellent bactericidal activity against glycopeptide-susceptible and -resistant Gram-positive bacteria. Oritavancin is the N-alkyl-p-chlorophenylbenzyl derivative of chloroeremomycin (LY264826) and is currently in phase III clinical trials for use in Gram-positive infections. Studies show that oritavancin and related alkyl glycopeptides inhibit bacterial cell wall formation by blocking the transglycosylation step in peptidoglycan biosynthesis in a substrate-dependent manner. As with other glycopeptide antibiotics, including vancomycin, the effects of oritavancin on cell wall synthesis are attributable to interactions with dipeptidyl residues of peptidoglycan precursors. Unlike vancomycin, however, oritavancin is strongly dimerized and can anchor to the cytoplasmic membrane, the latter facilitated by its alkyl side chain. Cooperative interactions derived from dimerization and membrane anchoring in situ can be of sufficient strength to enable binding to either dipeptidyl or didepsipeptidyl peptidoglycan residues of vancomycin-susceptible and -resistant enterococci, respectively. This review describes the antibacterial activity of oritavancin, and examines the evidence supporting the proposed mechanism of action for this agent and related analogs.

PubMed Disclaimer

MeSH terms