Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Apr;17(6):773-5.
doi: 10.1096/fj.02-0668fje. Epub 2003 Feb 5.

Protection against lipopolysaccharide-induced endothelial dysfunction in resistance and conduit vasculature of iNOS knockout mice

Affiliations

Protection against lipopolysaccharide-induced endothelial dysfunction in resistance and conduit vasculature of iNOS knockout mice

S D Chauhan et al. FASEB J. 2003 Apr.

Abstract

Endothelial dysfunction is a characteristic of, and may be pathogenic in, inflammatory cardiovascular diseases, including sepsis. The mechanism underlying inflammation-induced endothelial dysfunction may be related to the expression and activity of inducible nitric oxide synthase (iNOS). This possibility was investigated in isolated resistance (mesenteric) and conduit (aorta) arteries taken from lipopolysaccharide (LPS)-treated (12.5 mg/kg i.v.) or saline-treated iNOS knockout (KO) and wild-type (WT) mice. LPS pretreatment (for 15 h, but not 4 h) profoundly suppressed responses to acetylcholine (ACh) and significantly reduced sensitivity to the NO donor spermine-NONOate (SPER-NO) in aorta and mesenteric arteries of WT mice. This effect was temporally associated with iNOS protein expression in both conduit and resistance arteries and with a 10-fold increase in plasma NOx levels. In contrast, no elevation of plasma NOx was observed in LPS-treated iNOS KO animals, and arteries dissected from these animals did not express iNOS or display hyporeactivity to ACh or SPER-NO. The mechanism underlying this phenomenon may be suppression of eNOS expression, as observed in arteries of WT animals, that was absent in arteries of iNOS KO animals. These results clearly demonstrate that iNOS induction plays an integral role in mediation of the endothelial dysfunction associated with sepsis in both resistance and conduit arteries.

PubMed Disclaimer

MeSH terms

LinkOut - more resources