Insulin-like growth factor regulates peak bone mineral density in mice by both growth hormone-dependent and -independent mechanisms
- PMID: 12586770
- PMCID: PMC2923925
- DOI: 10.1210/en.2002-220948
Insulin-like growth factor regulates peak bone mineral density in mice by both growth hormone-dependent and -independent mechanisms
Abstract
To evaluate the relative contribution of the GH/IGF axis to the development of peak bone mineral density (BMD), we measured skeletal changes in IGF-I knockout (KO), IGF-II KO, and GH-deficient lit/lit mice and their corresponding control mice at d 23 (prepubertal), 31 (pubertal), and 56 (postpubertal) in the entire femur by dual energy x-ray absorptiometry and in the mid-diaphysis by peripheral quantitative computed tomography. Lack of growth factors resulted in different degrees of failure of skeletal growth depending on the growth period and the growth factor involved. At d 23, femoral length, size, and BMD were reduced by 25-40%, 15-17%, and 8-10%, respectively, in mice deficient in IGF-I, IGF-II, and GH compared with the control mice. During puberty, BMD increased by 40% in control mice and by 15% in IGF-II KO and GH-deficient mice, whereas it did not increase in the IGF-I KO mice. Disruption of IGF-I, but not IGF-II, completely prevented the periosteal expansion that occurs during puberty, whereas it was reduced by 50% in GH-deficient mice. At d 56, femoral length, size, and BMD were reduced by 40-55%, 11-18%, and 25-32%, respectively, in mice deficient in IGF-I, IGF-II, and GH compared with the control mice. Our data demonstrate that: 1) mice deficient in IGF-I exhibit a greater impairment in bone accretion than mice deficient in IGF-II or GH; 2) GH/IGF-I, but not IGF-II, is critical for puberty-induced bone growth; and 3) IGF-I effects on bone accretion during prepuberty are mediated predominantly via mechanisms independent of GH, whereas during puberty they are mediated via both GH-dependent and GH-independent mechanisms.
Figures
References
-
- Riggs BL, Melton LJ., 3rd The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone. 1995;17:505S–511S. - PubMed
-
- Johnston CC, Jr, Slemenda CW. Peak bone mass, bone loss and risk of fracture. Osteoporos Int. 1994;4:43–45. - PubMed
-
- Seeman E, Tsalamandris C, Formica C, Hopper JL, McKay J. Reduced femoral neck bone density in the daughters of women with hip fractures: the role of low peak bone density in the pathogenesis of osteoporosis. J Bone Miner Res. 1994;9:739–743. - PubMed
-
- Gilsanz V, Roe TF, Mora S, Costin G, Goodman WG. Changes in vertebral bone density in black girls and white girls during childhood and puberty. N Engl J Med. 1991;325:1597–1600. - PubMed
-
- Libanati C, Baylink DJ, Lois-Wenzel E, Srinvasan N, Mohan S. Studies on the potential mediators of skeletal changes occurring during puberty in girls. J Clin Endocrinol Metab. 1999;84:2807–2814. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials
