Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Feb;27(2):196-203.
doi: 10.1038/sj.ijo.802202.

Relation between calcium intake and fat oxidation in adult humans

Affiliations

Relation between calcium intake and fat oxidation in adult humans

E L Melanson et al. Int J Obes Relat Metab Disord. 2003 Feb.

Abstract

Objective: To determine if total calcium (Ca(2+)) intake and intake of Ca(2+) from dairy sources are related to whole-body fat oxidation.

Design: : Cross-sectional study.

Subjects: A total of 35 (21 m, 14 f) non-obese, healthy adults (mean+/-s.d., age: 31+/-6 y; weight: 71.2+/-12.3 kg; BMI: 23.7+/-2.9 kg m(-2); body fat: 21.4+/-5.4%).

Measurements: Daily (24 h) energy expenditure (EE) and macronutrient oxidation using whole-room indirect calorimetry; habitual Ca(2+) intake estimated from analysis of 4-day food records; acute Ca(2+) intake estimated from measured food intake during a 24-h stay in a room calorimeter.

Results: Acute Ca(2+) intake (mg. kcal(-1)) was positively correlated with fat oxidation over 24 h (r=0.38, P=0.03), during sleep (r=0.36, P=0.04), and during light physical activity (r=0.32, P=0.07). Acute Ca(2+) intake was inversely correlated with 24-h respiratory quotient (RQ) (r=-0.36, P=0.04) and RQ during sleep (r=-0.31, P=0.07). After adjustment for fat mass, fat-free mass, energy balance, acute fat intake, and habitual fat intake, acute Ca(2+) intake explained approximately 10% of the variance in 24-h fat oxidation. Habitual Ca(2+) intake was not significantly correlated to fat oxidation or RQ. Total Ca(2+) intake and Ca(2+) intake from dairy sources were similarly correlated with fat oxidation. In backwards stepwise models, total Ca(2+) intake was a stronger predictor of 24 h fat oxidation than dairy Ca(2+) intake.

Conclusion: Higher acute Ca(2+) intake is associated with higher rates of whole-body fat oxidation. These effects were apparent over 24 h, during sleep and, to a lesser extent, during light physical activity. Calcium intake from dairy sources was not a more important predictor of fat oxidation than total Ca(2+) intake.

PubMed Disclaimer

Comment in

Publication types

Substances