Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Oct;16(5):373-7.

Dose-dependent inhibition of mitochondrial ATP synthase by 17 beta-estradiol

Affiliations
  • PMID: 12587531

Dose-dependent inhibition of mitochondrial ATP synthase by 17 beta-estradiol

F Massart et al. Gynecol Endocrinol. 2002 Oct.

Abstract

Mitochondria produce energy through oxidative phosphorylation. A key enzyme in this pathway is F0F1-ATP synthase, catalyzing ATP production from ADP and inorganic phosphate. Recently a subunit of F0F1-ATP synthase, oligomycin sensitivity-conferring protein, was identified as a new estradiol-binding protein. Estradiol could directly modulate mitochondrial ATP synthase activity through this subunit. In addition, intracellular ATP levels play a role in apoptotic death, which is an energy-dependent process requiring functioning mitochondria. Here we examined the effect of 17 beta-estradiol on F0F1-ATP synthase directly (in permeabilized cells) and in intact osteoclastic FLG 29.1 cells, a model of inducible apoptosis. The baseline F0F1-ATP synthase activity of FLG 29.1 cells was 4.485 nmol/min per mg. Estradiol rapidly inhibited F0F1-ATP synthase activity in the physiological range (half-inhibition concentration, IC50, of 30 nmol/l). With 1 nmol/l of estradiol, the inhibition was already significant (8-10% inhibition, p < 0.01) and with 100 nmol/l residual enzyme activity was only 15% (85% inhibition, p < 0.01). In addition, the effect of estradiol appeared to be directed towards F0F1-ATP synthase, since succinate-sustained respiration, uncoupled from the electron transport chain, was unaffected by estradiol. We assayed F0F1-ATP synthase activity in FLG 29.1 cells during inducible apoptosis. No significant difference of ATP synthesis was detected in apoptotic cells versus controls. In conclusion, we showed a new non-genomic effect of estradiol on a key mitochondrial enzyme, which thereby directly modulates cellular energy metabolism.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources