Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Mar 1;12(5):453-61.
doi: 10.1093/hmg/ddg042.

Mutations in a new scaffold protein Sans cause deafness in Jackson shaker mice

Affiliations

Mutations in a new scaffold protein Sans cause deafness in Jackson shaker mice

Yoshiaki Kikkawa et al. Hum Mol Genet. .

Abstract

The Jackson shaker (js) mouse carries a recessive mutation causing phenotypes such as deafness, abnormal behavior (circling and/or head-tossing) and degeneration of inner ear neuroepithelia. Two alleles have been identified so far, the original js and js(seal). A contig of three BAC clones was isolated by positional cloning. Two of the clones rescue the js phenotype by BAC transgenesis. Analysis of transcripts in an overlapping region of the two clones revealed a gene encoding a new scaffold-like protein, Sans, that showed mutations in the two js mutants. One was a guanine nucleotide insertion in the original js allele and the other a 7-base insertion in the js(seal) allele. Both insertions are predicted to inactivate the Sans protein by frameshift mutations resulting in a truncated protein lacking the C-terminal SAM domain. Cochlear hair cells in the js mutants show disorganized stereocilia bundles, and Sans were highly expressed in inner and outer hair cells of cochlea. The existence of major motifs, ankyrin repeats and a SAM domain suggests that Sans may have an important role in the development and maintenance of the stereocilia bundles through protein-protein interaction.

PubMed Disclaimer

Publication types

Associated data