Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Mar 1;12(5):497-508.
doi: 10.1093/hmg/ddg046.

Specific progressive cAMP reduction implicates energy deficit in presymptomatic Huntington's disease knock-in mice

Affiliations

Specific progressive cAMP reduction implicates energy deficit in presymptomatic Huntington's disease knock-in mice

Silvia Gines et al. Hum Mol Genet. .

Abstract

Defects in gene transcription and mitochondrial function have been implicated in the dominant disease process that leads to the loss of striatal neurons in Huntington's disease (HD). Here we have used precise genetic HD mouse and striatal cell models to investigate the hypothesis that decreased cAMP responsive element (CRE)-mediated gene transcription may reflect impaired energy metabolism. We found that reduced CRE-signaling in Hdh(Q111) striatum, monitored by brain derived neurotrophic factor and phospho-CRE binding protein (CREB), predated inclusion formation. Furthermore, cAMP levels in Hdh(Q111) striatum declined from an early age (10 weeks), and cAMP was significantly decreased in HD postmortem brain and lymphoblastoid cells, attesting to a chronic deficit in man. Reduced CRE-signaling in cultured STHdh(Q111) striatal cells was associated with cytosolic CREB binding protein that mirrored diminished cAMP synthesis. Moreover, mutant cells exhibited mitochondrial respiratory chain impairment, evidenced by decreased ATP and ATP/ADP ratio, impaired MTT conversion and heightened sensitivity to 3-nitropropionic acid. Thus, our findings strongly suggest that impaired ATP synthesis and diminished cAMP levels amplify the early HD disease cascade by decreasing CRE-regulated gene transcription and altering energy dependent processes essential to neuronal cell survival.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances