Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Oct;40(1-3):317-24.
doi: 10.1016/s0165-0173(02)00214-x.

Changes in mRNA content of developing opossum spinal cord at stages when regeneration can and cannot occur after injury

Affiliations
Review

Changes in mRNA content of developing opossum spinal cord at stages when regeneration can and cannot occur after injury

Miranda Mladinic et al. Brain Res Brain Res Rev. 2002 Oct.

Abstract

The molecular mechanisms responsible for regeneration in the mammalian central nervous system (CNS) are poorly understood. Unlike the situation in adults, in the neonatal opossum, as in other immature mammals, the CNS shows successful regeneration after injury. We have used the isolated opossum CNS as a preparation for studying regeneration. An advantage of the opossum is that its developing spinal cord exhibits a gradient of regeneration in time and space. Thus, the potential for repair becomes lost in the cervical spinal cord when animals reach an age of 12 days or more. Animals up to 17 days of age still show regeneration in less mature lumbar segments of the spinal cord. To identify genes that underlie the process of regeneration we are studying mRNA changes in spinal cords at various stages of development. We have developed techniques for narrowing down the number of candidate genes by performing different gene subtraction experiments and by cross-hybridizing their results. This allowed us to select sequences differentially expressed in regeneration and to eliminate genes unrelated to that process. Our results reveal a number of novel sequences that could be important for spinal cord regeneration, as well as genes already supposed to play a role in regeneration.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources