Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Feb 15;63(4):824-30.

Blocking telomerase by dietary polyphenols is a major mechanism for limiting the growth of human cancer cells in vitro and in vivo

Affiliations
  • PMID: 12591733

Blocking telomerase by dietary polyphenols is a major mechanism for limiting the growth of human cancer cells in vitro and in vivo

Imad Naasani et al. Cancer Res. .

Abstract

Animal and epidemiological studies reveal that consuming food and beverages rich in polyphenols (e.g., catechins, flavones, and antocyanines) is associated with a lower incidence of cancer, and several molecular mechanisms have been proposed for explaining this effect. However, because most of these mechanisms were observed only under specific and nonphysiological conditions, and in most cases, with practically irrelevant concentrations, there is still no clear-cut or universal explanation for the major events that underlie the anticancer effects of polyphenols. In this study we present clear in vitro and in vivo evidence that the inhibition of the cancer-associated enzyme telomerase is a key mechanism involved in cancer inhibition by epigallocatechin gallate (EGCG), a major tea polyphenol. We demonstrate that EGCG and other selected polyphenols undergo structural rearrangements at physiologically permissible conditions that result in remarkably increased telomerase inhibition. In nude mice models bearing both telomerase-dependent and -independent xenograft tumors cloned from a single human cancer progeny, only the telomerase-dependent tumors responded to prolonged oral administration of EGCG. Thus, EGCG and likely other structurally related dietary polyphenols seem to act as prodrug-like molecules that, once ingested and distributed, undergo structural changes that favor potent activity against telomerase.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources