Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Feb 20;421(6925):844-8.
doi: 10.1038/nature01374.

Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo

Affiliations

Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo

Thomas Klausberger et al. Nature. .

Erratum in

  • Nature. 2006 Jun 15;441(7095):902. Dosage error in article text

Abstract

Neural-network oscillations at distinct frequencies have been implicated in the encoding, consolidation and retrieval of information in the hippocampus. Some GABA (gamma-aminobutyric acid)-containing interneurons fire phase-locked to theta oscillations (4-8 Hz) or to sharp-wave-associated ripple oscillations (120-200 Hz), which represent different behavioural states. Interneurons also entrain pyramidal cells in vitro. The large diversity of interneurons poses the question of whether they have specific roles in shaping distinct network activities in vivo. Here we report that three distinct interneuron types--basket, axo-axonic and oriens-lacunosum-moleculare cells--visualized and defined by synaptic connectivity as well as by neurochemical markers, contribute differentially to theta and ripple oscillations in anaesthetized rats. The firing patterns of individual cells of the same class are remarkably stereotyped and provide unique signatures for each class. We conclude that the diversity of interneurons, innervating distinct domains of pyramidal cells, emerged to coordinate the activity of pyramidal cells in a temporally distinct and brain-state-dependent manner.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms