Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Feb 21;92(3):286-92.
doi: 10.1161/01.res.0000054625.24468.08.

Depletion of intracellular Ca2+ stores sensitizes the flow-induced Ca2+ influx in rat endothelial cells

Affiliations
Free article

Depletion of intracellular Ca2+ stores sensitizes the flow-induced Ca2+ influx in rat endothelial cells

Hiu-Yee Kwan et al. Circ Res. .
Free article

Abstract

Hemodynamic shear stress elicits a rise in endothelial [Ca2+]i, which may serve as a key second messenger to regulate many flow-associated physiological and biochemical processes. In the present study, we used Mn2+ quenching of fluorescent dye Fluo3 as an assay to investigate the Ca2+ influx of rat aortic endothelial cells in response to flow. We found that the Ca2+ signaling in response to flow could be greatly influenced by the status of intracellular Ca2+ stores. Depletion of intracellular Ca2+ stores by thapsigargin (4 micromol/L) or cyclopiazonic acid (10 micromol/L) drastically sensitized the Ca2+ influx in response to flow. Ca2+-mobilizing agonist bradykinin (100 nmol/L) or ATP (100 micromol/L) had similar sensitizing effect. The effect of bradykinin or ATP was blocked by Xestospongin C and U73122, suggesting that the sensitization was related to the IP3-mediated store depletion. On the other hand, the Mn2+ quenching in response to flow was greatly reduced by ochratoxin A (100 nmol/L), an agent that could increase the filling state of intracellular Ca2+ stores. In addition, we found that depletion-sensitized Ca2+ influx in response to flow was mediated by a PKG-inhibitable cation channel and that the influx was affected by membrane potential and K+ channel activity. In conclusion, the present study argues for a critical role of intracellular Ca2+ status in determining the Ca2+ signaling in response to flow and it provides a general mechanistic explanation for the stimulatory role of blood-borne agonists on flow-induced Ca2+ influx.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources