Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Mar;61(1-4):293-302.
doi: 10.1016/S0169-7722(02)00128-6.

Modeling diffusion and adsorption in compacted bentonite: a critical review

Affiliations
Review

Modeling diffusion and adsorption in compacted bentonite: a critical review

Ian C Bourg et al. J Contam Hydrol. 2003 Mar.

Abstract

The current way of describing diffusive transport through compacted clays is a simple diffusion model coupled to a linear adsorption coefficient (K(d)). To fit the observed results of cation diffusion, this model is usually extended with an adjustable "surface diffusion" coefficient. Description of the negative adsorption of anions calls for a further adjustment through the use of an "effective porosity". The final model thus includes many fitting parameters. This is inconvenient where predictive modeling is called for (e.g., for waste confinement using compacted clay liners). The diffusion/adsorption models in current use have been derived from the common hydrogeological equation of advection/dispersion/adsorption. However, certain simplifications were also borrowed without questioning their applicability to the case of compacted clays. Among these simplifications, the assumption that the volume of the adsorbed phase is negligible should be discussed. We propose a modified diffusion/adsorption model that accounts for the volume of the adsorbed phase. It suggests that diffusion through highly compacted clay takes place through the interlayers (i.e., in the adsorbed phase). Quantitative prediction of the diffusive flux will necessitate more detailed descriptions of surface reactivity and of the mobility of interlayer species.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources