Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 May 23;278(21):19367-77.
doi: 10.1074/jbc.M211821200. Epub 2003 Feb 21.

Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons

Affiliations
Free article

Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons

William Andrew Holtz et al. J Biol Chem. .
Free article

Abstract

Genes associated with Parkinson's disease (PD) have suggested a role for ubiquitin-proteasome dysfunction and aberrant protein degradation in this disorder. Inasmuch as oxidative stress has also been implicated in PD, the present study examined transcriptional changes mediated by the Parkinsonism-inducing neurotoxins 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenylpyridinium (MPP+) in a dopaminergic cell line. Microarray analysis of RNA isolated from toxin treated samples revealed that the stress-induced transcription factor CHOP/Gadd153 was dramatically up-regulated by both 6-OHDA and MPP+. Treatment with 6-OHDA also induced a large number of genes involved in endoplasmic reticulum stress and unfolded protein response (UPR) such as ER chaperones and elements of the ubiquitin-proteasome system. Reverse transcription-PCR, Western blotting, and immunocytochemical approaches were used to quantify and temporally order the UPR pathways involved in neurotoxin-induced cell death. 6-OHDA, but not MPP+, significantly increased hallmarks of UPR such as BiP, c-Jun, and processed Xbp1 mRNA. Both toxins increased the phosphorylation of UPR proteins, PERK and eIF2 alpha, but only 6-OHDA increased phosphorylation of c-Jun. Thus, 6-OHDA is capable of triggering multiple pathways associated with UPR, whereas MPP+ exhibits a more restricted response. The involvement of UPR in these widely used neurotoxin models supports the role of ubiquitin-proteasome pathway dysfunction in PD.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources