Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Feb;134(2):227-34.
doi: 10.1016/s1532-0456(02)00253-3.

Cadmium-dependent generation of reactive oxygen species and mitochondrial DNA breaks in photosynthetic and non-photosynthetic strains of Euglena gracilis

Affiliations
Comparative Study

Cadmium-dependent generation of reactive oxygen species and mitochondrial DNA breaks in photosynthetic and non-photosynthetic strains of Euglena gracilis

Masumi Watanabe et al. Comp Biochem Physiol C Toxicol Pharmacol. 2003 Feb.

Abstract

The photosynthetic strain Z of Euglena gracilis is more susceptible to cadmium chloride (Cd) than the non-photosynthetic strain SMZ. We investigated the correlation of intracellular reactive oxygen species (ROS) levels with Cd-induced cellular damage. Flow cytometry with dihydrorhodamine 123 showed that strain Z generated higher levels of ROS, probably H(2)O(2) and/or ONOO(-), than strain SMZ, and that this difference between the two strains became more pronounced with increasing Cd dose. The levels of ROS increased at cytotoxic concentrations of Cd, at over 10 microM Cd for Z and 50 microM Cd for SMZ. These results show an association of Cd cytotoxicity with ROS generation. Considering that strain SMZ is non-photosynthetic, the higher levels of ROS in strain Z might be due to blockage of photosynthetic electron flow by Cd. Using terminal deoxyribonucleotidyl transferase-mediated dUTP nick end-labeling analysis in combination with 4',6-diamidino-2-phenylindole, dihydrochloride staining, we observed DNA breaks in the mitochondria of both strains after Cd exposure. The results suggest that the mitochondrion is the primary target organelle of Cd in E. gracilis cells.

PubMed Disclaimer

Publication types

LinkOut - more resources