Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Mar;18(1):1-9.
doi: 10.1023/a:1021958016928.

Indomethacin reduces lipid peroxidation in rat brain homogenate by binding Fe2+

Affiliations

Indomethacin reduces lipid peroxidation in rat brain homogenate by binding Fe2+

Shailendra Anoopkumar-Dukie et al. Metab Brain Dis. 2003 Mar.

Abstract

One of the hallmarks of Alzheimer's disease (AD) is the progressive degeneration of cholinergic neurons in the cerebral cortex and hippocampus. It is generally accepted that this neuronal degeneration is due to free-radical-induced damage. These free radicals attack vital structural components of the neurons. This implies that agents that reduce free radical generation could potentially delay the progression of AD. Free radical generation in the brain is assisted by the presence of iron, required by the Fenton reaction. Thus, agents that reduce iron availability for this reaction could potentially reduce free radical formation. Since non steroidal anti-inflammatory drugs (NSAIDS) have been shown to reduce the severity of AD, we investigated the possible mechanism by which indomethacin could afford neuroprotection. Our results show that indomethacin (1 mM) is able to reduce the iron-induced rise in lipid peroxidation in rat brain homogenates. In addition, our NMR data indicate that indomethacin binds the Fe(2+)/Fe(3+) ion. This was confirmed by a study using UV/Vis spectrophotometry. The results imply that indomethacin provides a neuroprotective effect by binding to iron and thus making it unavailable for free radical production.

PubMed Disclaimer

Publication types

LinkOut - more resources