Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Mar;270(5):939-49.
doi: 10.1046/j.1432-1033.2003.03456.x.

Structural and biological effects of a beta2- or beta3-amino acid insertion in a peptide

Affiliations
Free article

Structural and biological effects of a beta2- or beta3-amino acid insertion in a peptide

Sandrine Sagan et al. Eur J Biochem. 2003 Mar.
Free article

Abstract

Molecular mechanics calculations on conformers of Ac-HGly-NHMe, Ac-beta2-HAla-NHMe and Ac-beta3-HAla-NHMe indicate that low-energy conformations of the beta-amino acids backbone, corresponding to gauche rotamers around the Calpha-Cbeta bond, may overlap canonical backbone conformers observed for alpha-amino acids. Therefore, Substance P (SP) was used as a model peptide to analyse the structural and biological consequences of the substitution of Phe7 and Phe8 by (R)-beta2-HPhe and of Gly9 by HGly (R)-beta2-HAla or (S)-beta3-HAla. [(R)-beta2-HAla9]SP has pharmacological potency similar to that of SP while [HGly9]SP and [(S)-beta3-HAla9]SP show a 30- to 50-fold decrease in biological activities. The three analogues modified at position 9 are more resistant to degradation by angiotensin converting enzyme than SP and [Ala9]SP. NMR analysis of these SP analogues suggest that a beta-amino acid insertion in position 9 does not affect the overall backbone conformation. Altogether these data suggest that [HGly9]SP, [(S)-beta3-HAla9]SP and [(R)-beta2-HAla9]SP could adopt backbone conformations similar to that of SP, [Ala9]SP and [Pro9]SP. In contrast, incorporation of beta2-HPhe in position 7 and 8 of SP led to peptides that are almost devoid of biological activity. Thus, a beta-amino acid could replace an alpha-amino acid within the sequence of a bioactive peptide provided that the additional methylene group does not cause steric hindrance and does not confine orientations of the side chain to regions of space different from those permitted in the alpha-amino acid.

PubMed Disclaimer

LinkOut - more resources