Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Mar;68(3):1027-34.
doi: 10.1095/biolreprod.102.009381.

Adenosine stimulates anion secretion across cultured and native adult human vas deferens epithelia

Affiliations

Adenosine stimulates anion secretion across cultured and native adult human vas deferens epithelia

Ryan W Carlin et al. Biol Reprod. 2003 Mar.

Abstract

Experiments were conducted to determine the responsiveness of human vas deferens epithelial cell monolayers to adenosine and related agonists. Human abdominal vas deferens epithelial cells have been isolated from adult tissues and grown to confluence on permeable supports. All cells exhibit intense ZO-1 and cytokeratin immunoreactivity. Cultured cell monolayers exhibit high electrical resistance with a lumen-negative potential difference and short circuit current (I(sc)) indicative of anion secretion and/or cation absorption. A portion of the basal I(sc) is inhibited by amiloride. Amiloride-sensitive I(sc) is enhanced by exposure to glucocorticoids and is Na(+) dependent, indicating the presence of epithelial sodium channel-mediated Na(+) absorption. Epithelial anion secretion and intracellular generation of cAMP are acutely stimulated by adenosine and the adenosine receptor agonist 5'-(N-ethylcarboxamido)adenosine (NECA), with these effects being fully blocked by 8-phenyltheophylline. Adenosine receptors are localized to the apical membrane of the epithelial cells, as basolateral adenosine is without effect. Freshly excised human vas deferens recapitulate observations made on cultured epithelia when evaluated with the self-referencing vibrating probe: amiloride inhibition of basal ion transport, stimulation by adenosine, and inhibition by 8-phenyltheophyline. These results demonstrate that adult human vas deferens epithelium actively transports ions to generate the luminal environment of the deferent duct. Thus, vas deferens epithelium likely plays an active role in male fertility, and interventions that modulate epithelial function might be exploited to treat male-factor infertility or in contraception.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources