Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Apr;36(4):1510-9.

Horseradish peroxidase/hydrogen peroxide-catalyzed oxidation of the carcinogen N-hydroxy-N-acetyl-2-aminofluorene as effected by cyanide and ascorbate

  • PMID: 1260768

Horseradish peroxidase/hydrogen peroxide-catalyzed oxidation of the carcinogen N-hydroxy-N-acetyl-2-aminofluorene as effected by cyanide and ascorbate

R A Floyd et al. Cancer Res. 1976 Apr.

Abstract

Horseradish peroxidase and H2O2 mediate N-hydroxy-N-acetyl-2-aminofluorene (N-OH-AAF) conversion into two more potent carcinogens, 2-nitrosofluorene and N-acetoxy-N-acetyl-2-aminofluorene. Optical studies of this system indicate that horseradish peroxidase is operating as a peroxidase with N-OH-AAF as the electron donor. Our studies confirm the earlier finding that 2-nitrosofluorene and N-acetoxy-N-acetyl-2-aminofluorene are the products of the type II enzyme-mediated oxidation of N-OH-AAF, but surprisingly, the results with the type VI enzyme indicate that more 2-nitrosofluorene was formed and, in addition, another product absorbing at 245 nm was formed. If ascorbate is present in the N-OH-AAF/horseradish peroxidase/H2O2 system, ascorbate is oxidized preferentially. Cyanide, a known inhibitor of the peroxidase, does not inhibit when N-OH-AAF is the electron donor. The reaction products are the same in the presence or absence of cyanide.

PubMed Disclaimer

Similar articles

Cited by

Publication types