Stability and Cu(II) binding of prion protein variants related to inherited human prion diseases
- PMID: 12609901
- PMCID: PMC1302768
- DOI: 10.1016/S0006-3495(03)75007-3
Stability and Cu(II) binding of prion protein variants related to inherited human prion diseases
Abstract
All inherited forms of human prion diseases are linked with mutations in the prion protein (PrP) gene. Here we have investigated the stability and Cu(II) binding properties of three recombinant variants of murine full-length PrP(23-231)-containing destabilizing point mutations that are associated with human Gerstmann-Sträussler-Scheinker disease (F198S), Creutzfeld-Jakob disease (E200K), and fatal familial insomnia (D178N) by electron paramagnetic resonance and circular dichroism spectroscopy. Furthermore, we analyzed the variants H140S, H177S, and H187S of the isolated C-terminal domain of murine PrP, mPrP(121-231), to test a role of the histidine residues in Cu(II) binding. The F198S and E200K variants of PrP(23-231) differed in Cu(II) binding from the wild-type mPrP(23-231). However, circular dichroism spectroscopy indicated that the variants and the wild type did not undergo conformational changes in the presence of Cu(II). The D178N variant showed a high tendency to aggregate at pH 7.4 both with and without Cu(II). At lower pH values, it showed the same Cu(II) binding behavior as the wild type. The analysis allowed for a better location of the Cu(II) binding sites in the C-terminal part of the protein. Our present data indicate that hereditary forms of prion diseases cannot be rationalized on the basis of altered Cu(II) binding or mutation-induced protein destabilization alone.
Figures





Similar articles
-
Electron paramagnetic resonance evidence for binding of Cu(2+) to the C-terminal domain of the murine prion protein.Biophys J. 2001 Jul;81(1):516-25. doi: 10.1016/S0006-3495(01)75718-9. Biophys J. 2001. PMID: 11423433 Free PMC article.
-
Familial mutations and the thermodynamic stability of the recombinant human prion protein.J Biol Chem. 1998 Nov 20;273(47):31048-52. doi: 10.1074/jbc.273.47.31048. J Biol Chem. 1998. PMID: 9813003
-
Influence of amino acid substitutions related to inherited human prion diseases on the thermodynamic stability of the cellular prion protein.Biochemistry. 1999 Mar 16;38(11):3258-67. doi: 10.1021/bi982714g. Biochemistry. 1999. PMID: 10079068
-
Biology and genetics of prion diseases.Annu Rev Microbiol. 1994;48:655-86. doi: 10.1146/annurev.mi.48.100194.003255. Annu Rev Microbiol. 1994. PMID: 7826022 Review.
-
Prion encephalopathies of animals and humans.Dev Biol Stand. 1993;80:31-44. Dev Biol Stand. 1993. PMID: 8270114 Review.
Cited by
-
Pathogenic mutations in the hydrophobic core of the human prion protein can promote structural instability and misfolding.J Mol Biol. 2010 Dec 10;404(4):732-48. doi: 10.1016/j.jmb.2010.09.060. Epub 2010 Oct 7. J Mol Biol. 2010. PMID: 20932979 Free PMC article.
-
Checking the pH-induced conformational transition of prion protein by molecular dynamics simulations: effect of protonation of histidine residues.Biophys J. 2004 Dec;87(6):3623-32. doi: 10.1529/biophysj.104.043448. Epub 2004 Sep 17. Biophys J. 2004. PMID: 15377536 Free PMC article.
-
Functional implications of multistage copper binding to the prion protein.Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11576-81. doi: 10.1073/pnas.0903807106. Epub 2009 Jun 26. Proc Natl Acad Sci U S A. 2009. PMID: 19561303 Free PMC article.
-
Insight into the copper coordination environment in the prion protein through density functional theory calculations of EPR parameters.J Biol Inorg Chem. 2009 May;14(4):547-57. doi: 10.1007/s00775-009-0469-9. Epub 2009 Jan 31. J Biol Inorg Chem. 2009. PMID: 19184131
-
Insights into prion protein function from atomistic simulations.Prion. 2010 Jan-Mar;4(1):13-9. doi: 10.4161/pri.4.1.10969. Epub 2010 Jan 16. Prion. 2010. PMID: 20118658 Free PMC article. Review.
References
-
- Aronoff-Spencer, E., C. S. Burns, N. I. Avdievich, G. J. Gerfen, J. Peisach, W. E. Antholine, H. L. Ball, F. E. Cohen, S. B. Prusiner, and G. L. Millhauser. 2000. Identification of the Cu2+ binding sites in the N-terminal domain of the prion protein by EPR and CD spectroscopy. Biochemistry 39:13760–13771. - PMC - PubMed
-
- Bell, J. E. and J. W. Ironside. 1993. Neuropathology of spongiform encephalopathies in humans. Br. Med. Bull. 49:738–777. - PubMed
-
- Brown, D. R., K. Qin, J. W. Herms, A. Madlung, J. Manson, R. Strome, P. E. Fraser, T. Kruck, A. von Bohlen, W. Schulz-Schaeffer, A. Giese, D. Westaway, and H. Kretzschmar. 1997. The cellular prion protein binds copper in vivo. Nature 390:684–687. - PubMed
-
- Burns, C. S., E. Aronoff-Spencer, C. M. Dunham, P. Lario, N. I. Avdievich, W. E. Antholine, M. M. Olmstead, A. Vrielink, G. J. Gerfen, J. Peisach, W. G. Scott, and G. L. Millhauser. 2002. Molecular features of the copper-binding sites in the octarepeat domain of the prion protein. Biochemistry 41:3991–4001. - PMC - PubMed
-
- Butefisch, C. M., P. Gambetti, L. Cervenakova, K. Y. Park, M. Hallett, and L. G. Goldfarb. 2000. Inherited prion ecnephalopathy associated with the novel PRNP H187R mutation—a clinical study. Neurology 55:517–522. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials