Rietveld refinement on x-ray diffraction patterns of bioapatite in human fetal bones
- PMID: 12609904
- PMCID: PMC1302771
- DOI: 10.1016/S0006-3495(03)75010-3
Rietveld refinement on x-ray diffraction patterns of bioapatite in human fetal bones
Abstract
Bioapatite, the main constituent of mineralized tissue in mammalian bones, is a calcium-phosphate-based mineral that is similar in structure and composition to hydroxyapatite. In this work, the crystallographic structure of bioapatite in human fetuses was investigated by synchrotron radiation x-ray diffraction (XRD) and microdiffraction ( micro -XRD) techniques. Rietveld refinement analyses of XRD and micro -XRD data allow for quantitative probing of the structural modifications of bioapatite as functions of the mineralization process and gestational age.
Figures







Similar articles
-
Microarchitectural and physical changes during fetal growth in human vertebral bone.J Bone Miner Res. 2003 Apr;18(4):760-8. doi: 10.1359/jbmr.2003.18.4.760. J Bone Miner Res. 2003. PMID: 12674337
-
Synchrotron-based XRD from rat bone of different age groups.Mater Sci Eng C Mater Biol Appl. 2017 May 1;74:207-218. doi: 10.1016/j.msec.2016.11.136. Epub 2016 Dec 3. Mater Sci Eng C Mater Biol Appl. 2017. PMID: 28254286
-
Synthetical bone-like and biological hydroxyapatites: a comparative study of crystal structure and morphology.Biomed Mater. 2011 Aug;6(4):045005. doi: 10.1088/1748-6041/6/4/045005. Epub 2011 Jun 10. Biomed Mater. 2011. PMID: 21659698
-
Bulk and interface investigations of scaffolds and tissue-engineered bones by X-ray microtomography and X-ray microdiffraction.Biomaterials. 2007 May;28(15):2505-24. doi: 10.1016/j.biomaterials.2007.01.022. Epub 2007 Jan 16. Biomaterials. 2007. PMID: 17292959 Review.
-
X-ray microdiffraction of biominerals.Methods Enzymol. 2013;532:501-31. doi: 10.1016/B978-0-12-416617-2.00021-7. Methods Enzymol. 2013. PMID: 24188780 Review.
Cited by
-
X-ray diffraction studies of a partially demineralized oriented cortical bone with the controlled depth of analysis.Heliyon. 2023 Jun 29;9(7):e17809. doi: 10.1016/j.heliyon.2023.e17809. eCollection 2023 Jul. Heliyon. 2023. PMID: 37424593 Free PMC article.
-
Biomineralization of bone tissue: calcium phosphate-based inorganics in collagen fibrillar organic matrices.Biomater Res. 2022 Sep 6;26(1):42. doi: 10.1186/s40824-022-00288-0. Biomater Res. 2022. PMID: 36068587 Free PMC article. Review.
-
Tracing the pathway of compositional changes in bone mineral with age: preliminary study of bioapatite aging in hypermineralized dolphin's bulla.Biochim Biophys Acta. 2014 Jul;1840(7):2331-9. doi: 10.1016/j.bbagen.2014.03.012. Epub 2014 Mar 17. Biochim Biophys Acta. 2014. PMID: 24650888 Free PMC article.
-
Aging and bone.J Dent Res. 2010 Dec;89(12):1333-48. doi: 10.1177/0022034510377791. Epub 2010 Oct 5. J Dent Res. 2010. PMID: 20924069 Free PMC article. Review.
-
Orientational mapping of minerals in Pierre shale using X-ray diffraction tensor tomography.IUCrJ. 2021 Jul 17;8(Pt 5):747-756. doi: 10.1107/S205225252100587X. eCollection 2021 Sep 1. IUCrJ. 2021. PMID: 34584736 Free PMC article.
References
-
- Albright, J. A. and H. C. W. Skinner. 1987. Bone: structural organization and remodeling dynamics. In The Scientific Basis of Orthopaedics. J. A. Albright and R. Brand, editors. Appleton and Lange, Norwalk, CT. 161–198.
-
- Bareggi, R., V. Grill, M. A. Sandreucci, G. Baldini, A. De Pol, A. Forabosco, and P. Narducci. 1993. Development pathways of vertebral centra and neural arches in human embryos and fetuses. Anat. Embryol. (Berl.) 187:139–144. - PubMed
-
- Berry, E. E. 1967. The structure and composition of some calcium-deficient apatites. J. Inorg. Nucl. Chem. 29:317–327.
-
- Bigi, A., G. Cojazzi, S. Panzavolta, A. Ripamonti, N. Roveri, M. Romanello, K. Noris Suarez, and L. Moro. 1997. Chemical and structural characterization of the mineral phase from cortical and trabecular bone. J. Inorg. Biochem. 68:45–51. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources