Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Mar 12;125(10):3035-45.
doi: 10.1021/ja0293103.

Solvent-induced polymorphism of three-dimensional hydrogen-bonded networks of hexakis(4-carbamoylphenyl)benzene

Affiliations

Solvent-induced polymorphism of three-dimensional hydrogen-bonded networks of hexakis(4-carbamoylphenyl)benzene

Kenji Kobayashi et al. J Am Chem Soc. .

Abstract

The crystal structures for three types of three-dimensional (3-D) hydrogen-bonded networks of hexakis(4-carbamoylphenyl)benzene (1), the network morphologies of which depend greatly on crystallization conditions, have been determined. When this compound is crystallized from hot DMSO, the resulting crystals, 1.12DMSO (orthorhombic, Pca2(1)), showed a 3-D hydrogen-bonded porous network (type A) via 1-D catemer chains as a hydrogen-bonding motif of six primary amide groups. The type A network creates chambers surrounded by six molecules of 1 and channels along the c axis to give the highest porosity among the network polymorphs of 1 investigated here. Crystallization from a boiling mixture of n-PrOH and water gave 1.6n-PrOH (monoclinic, P2(1)/c), which exhibits another type of 3-D hydrogen-bonded porous network (type B) via cyclic dimers as another hydrogen-bonding motif of six primary amide groups. The type B network leads to triangle-like channels along the a axis having a cross section of ca. 9.2 x 9.7 x 9.7 A (including van der Waals radii). The crystal structure of 1.H(2)O (monoclinic, P2(1)/c), which was produced under hydrothermal conditions, showed a nonporous 3-D hydrogen-bonded network chain of amide groups (type C) composed of a mixed hydrogen bonding motif of helical catemer chains/cyclic dimer/catemer. Solvent-induced topological isomerism of these 3-D hydrogen-bonded networks of 1 arises from (i) the guest inclusion ability based on a radially functionalized hexagonal structure of 1, (ii) the correlation between the hydrogen bond donor ability of the syn and anti protons of the primary amide group in host 1 and the hydrogen bond acceptor ability of the oxygen atoms of 1 and guest solvents, and (iii) the polarity of the bulk crystallization solvents.

PubMed Disclaimer

LinkOut - more resources