Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003;116(4):1089-95.
doi: 10.1016/s0306-4522(02)00717-0.

Non-oscillatory discharges of an F-prostaglandin responsive neuron population in the olfactory bulb-telencephalon transition area in lake whitefish

Affiliations

Non-oscillatory discharges of an F-prostaglandin responsive neuron population in the olfactory bulb-telencephalon transition area in lake whitefish

F Laberge et al. Neuroscience. 2003.

Abstract

Our previous studies on olfactory bulbar responses in salmonid fishes suggest that pheromone signals might be processed by a mechanism distinct from that of other odorants. Using in vivo single-unit and electroencephalographic recordings, we investigated response characteristics of olfactory neurons in lake whitefish, Coregonus clupeaformis, a species characterized by high electrophysiological and behavioral sensitivities to the reproductive pheromone candidates F-prostaglandins. We found a neuron population responsive to F-prostaglandins in the ventromedial brain tissue strip connecting the olfactory bulb to the telencephalon. Of the 64 neurons examined in this area, 33% showed excitatory and 11% inhibitory responses to F-prostaglandins, while 52% were non-responsive to all the stimuli tested. Both phasic and tonic F-prostaglandin neuron response patterns were observed during the 10-s stimulus period; some responses were delayed from the onset of stimulation, and some persisted for a long time following stimulus cessation. This neuron population did not induce synchronized oscillatory waves upon stimulation with F-prostaglandins, despite massive discharges. We demonstrate for the first time that the olfactory bulb-telencephalon area of the brain is a distinct neural structure through which putative reproductive pheromone signals are integrated. Amino acid and F-prostaglandin neuron population discharges have different temporal characteristics, suggesting different processing mechanisms exist for odorant and pheromone signals. The observed sustained neuron discharges may play a role in amplifying pheromone signals required for triggering stereotyped neuroendocrine and/or behavior changes.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources