Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jan-Feb;12(1):39-44.
doi: 10.1159/000068915.

The stimulatory effect of cannabinoids on calcium uptake is mediated by Gs GTP-binding proteins and cAMP formation

Affiliations

The stimulatory effect of cannabinoids on calcium uptake is mediated by Gs GTP-binding proteins and cAMP formation

Roni Bash et al. Neurosignals. 2003 Jan-Feb.

Abstract

Cannabinoids are neurodepressive drugs that convey their cellular action through G(i/o) GTP-binding proteins which reduce cAMP formation and Ca(2+) influx. However, a growing body of evidence indicates that the stimulatory effects of cannabinoids include the elevation in cAMP and cytosolic Ca(2+) concentration. The present study expands our previous findings and demonstrates that, in N18TG2 neuroblastoma cells, the cannabinoid agonist desacetyllevonantradol (DALN) stimulates both cAMP formation and Ca(2+) uptake. The stimulatory effect of DALN on cAMP formation was not eliminated by blocking Ca(2+) entry to the cells, while its stimulatory effect on Ca(2+) uptake was abolished by blocking cAMP-dependent protein kinase. Furthermore, elevating cAMP by forskolin stimulated calcium uptake, while elevating the intracellular Ca(2+) concentration by ionomycin or KCl failed to stimulate cAMP formation. These findings suggest that cAMP production precedes the influx of Ca(2+) in the cannabinoid stimulatory cascade. The stimulatory effect of DALN on calcium uptake resisted pertussis toxin treatment, and was completely blocked by introducing anti-G(s) antibodies into the cells, indicating that the stimulatory activity of cannabinoids is mediated by G(s) GTP-binding proteins. The relevance of the cellular stimulatory activity of DALN to the pharmacological profile of cannabinoid drugs is discussed.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources