Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Mar;89(3):522-9.

Focusing on transcription factor families in atherogenesis: the function of LKLF and TR3

Affiliations
  • PMID: 12624637
Review

Focusing on transcription factor families in atherogenesis: the function of LKLF and TR3

E Karin Arkenbout et al. Thromb Haemost. 2003 Mar.

Abstract

In this overview, two separate studies are discussed that emerged from a "discovery-driven" approach to identify genes that play an essential role in atherogenesis. First, by a combination of DNA micro-array and one-way linkage hierachical clustering, we selected genes that are induced in endothelial cells (EC) by prolonged steady- or pulsatile laminar flow, but of which expression is not affected by inflammatory and mitogenic agents (TGF-beta, IL-1betaTNF-alpha,VEGF, thrombin). The genes selected accordingly were: cytochrome P450 1B1, diaphorase and the transcription factor lung Krüppel-like factor (LKLF) of which only the latter is truly EC specific. LKLF meets the criteria of an anti-atherosclerotic gene, mainly since expression is restricted to areas subjected to laminar flow as shown by in situ hybridization with anatomically well-defined specimens. Second, neointimal (but not medial) smooth muscle cells (SMC) specifically synthesize the NGFI-B subfamily (TR3, MINOR,NOT) of the nuclear hormone superfamily of transcription factors. Again, evidence is presented, indicating that these proteins serve an anti-atherosclerotic function. Notably, transgenic mice, expressing either TR3 or a dominant-negative mutant TR3DeltaTA in arterial SMC, were subjected to carotid artery ligation to induce SMC proliferation. Lesions in TR3-overexpressing transgenic mice were 5-fold smaller than isogenic wild-type mice, while mice overexpressing the TR3DeltaTA mutant had a 3-fold larger lesion. It is proposed that (down-stream products of) TR3 inhibit the cell cycle, since adenovirus-mediated expression of TR3DeltaTA and TR3, respectively, inhibit and promote the synthesis of the cyclin-dependent kinase inhibitor p27(Kip1) in SMC.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources