Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Feb;2(4):185-91.
doi: 10.1007/s102380300005.

Fuzzy logic-based tumor marker profiles improved sensitivity of the detection of progression in small-cell lung cancer patients

Affiliations

Fuzzy logic-based tumor marker profiles improved sensitivity of the detection of progression in small-cell lung cancer patients

J Schneider et al. Clin Exp Med. 2003 Feb.

Abstract

Tumor markers were used for disease monitoring in small-cell lung cancer patients. The aim of this study was to improve diagnostic efficiency in the detection of tumor progression in small-cell lung cancer patients by using fuzzy logic modeling in combination with a tumor marker panel (NSE, ProGRP, Tumor M2-PK, CYFRA 21-1, and CEA). Thirty-three consecutive small-cell lung cancer patients were included in a prospective study. The changes in blood levels of tumor markers and their analysis by fuzzy logic modeling were compared with the clinical evaluation of response versus non-response to therapy. Clinical monitoring was performed according to the standard criteria of the WHO. Tumor M2-PK was measured in plasma with an ELISA, all other markers were measured in sera. At 90% specificity, clinically detected tumor progression was found by the best single marker, NSE, in 32% of all cases. A fuzzy logic rule-based system employing a tumor marker panel increased the sensitivity significantly (P>0.0001) in small-cell carcinomas to 67% with the threemarker combination NSE/ProGRP/Tumor M2-PK and to 56% with the best two-marker combination ProGRP/Tumor M2-PK, respectively. An improvement of sensitivity was also observed using the two-marker combination of ProGRP/NSE (sensitivity 49%) or NSE/Tumor M2-PK (sensitivity 52%). The fuzzy classifier was able to detect a higher rate of progression in small-cell lung cancer patients compared with the multiple logistic regression analysis using the marker combination NSE/ProGRP/Tumor M2-PK (sensitivity 44%; AUC=0.76). With the fuzzy logic method and different tumor marker panels (NSE, ProGRP and Tumor M2-PK), a new diagnostic tool for the detection of progression in patients with small-cell lung cancer is available.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources