Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2003 May;94(5):1714-8.
doi: 10.1152/japplphysiol.01024.2002. Epub 2003 Mar 7.

EPR spectroscopic detection of free radical outflow from an isolated muscle bed in exercising humans

Affiliations
Free article
Clinical Trial

EPR spectroscopic detection of free radical outflow from an isolated muscle bed in exercising humans

Damian M Bailey et al. J Appl Physiol (1985). 2003 May.
Free article

Abstract

There is no direct evidence to support the contention that contracting skeletal muscle and/or associated vasculature generates free radicals in exercising humans. The unique combination of isolated quadriceps exercise and the measurement of femoral arterial and venous free radical concentrations with the use of electron paramagnetic resonance (EPR) spectroscopy enabled this assumption to be tested in seven healthy men. Application of ex vivo spin trapping using alpha-phenyl-tert-butylnitrone (PBN) resulted in the detection of oxygen- or carbon-centered free radicals (a(N) = 1.38 +/- 0.01 mT and a(beta)(H) = 0.17 +/-0.01 mT, where a(N) and a(beta)(H) are the nitrogen and beta-hydrogen coupling constants, respectively) with consistently higher EPR signal intensities of the PBN spin adduct observed in the venous compared with the arterial circulation (P < 0.05). Incremental exercise further increased the venoarterial intensity difference [85 +/- 58 arbitrary units (AU) at 24 +/- 6% maximal work rate (WR(max)) vs. 387 +/- 214 AU at 69 +/- 7% WR(max); P < 0.05]. When combined with measured changes in femoral venous blood flow (Q), this resulted in a net adduct outflow of 130 +/- 118 and 1,146 +/- 582 AU/min (P < 0.05), which was positively associated with leg oxygen uptake (r(2) = 0.47, P < 0.05) and Q (r(2) = 0.47, P < 0.05). These results provide the first evidence for oxygen- or carbon-centered free radical outflow from an active muscle bed in humans.

PubMed Disclaimer

Publication types

MeSH terms