Ets2 and protein kinase C epsilon are important regulators of parathyroid hormone-related protein expression in MCF-7 breast cancer cells
- PMID: 12628005
- PMCID: PMC1223436
- DOI: 10.1042/BJ20030046
Ets2 and protein kinase C epsilon are important regulators of parathyroid hormone-related protein expression in MCF-7 breast cancer cells
Abstract
Parathyroid hormone-related protein (PTHrP) promotes the metastatic potential and proliferation of breast cancer cells, and acts anti-apoptotically. In invasive MDA-MB-231 breast cancer cells, transforming growth factor beta-regulated PTHrP synthesis is mediated by an Ets1/Smad3-dependent activation of the PTHrP P3 promoter. In the present study, we studied the regulation of PTHrP expression in non-invasive, Ets1-deficient and transforming growth factor beta-resistant MCF-7 cells. We found PMA to be a strong stimulator of P3-dependent PTHrP expression in MCF-7 cells. Mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinase (ERK) kinase 1 (MEK-1)/ERK1/2 inhibitor PD98059 interfered with this activity. Promoter studies revealed that the PMA effect depended on the Ets and stimulating protein-1 (Sp1)-binding sites. Of several Ets factors tested, Ets2, but not Ese-1, Elf-1 or Ets1, supported the PMA-dependent increase in promoter activity. PD98059 and a threonine to alanine mutation of the ERK1/2-responsive Ets2 phosphorylation site at position 72 inhibited the Ets2/PMA effect. Activated protein kinase C (PKC) epsilon could mimic PMA by stimulating the P3 promoter alone or in co-operation with Ets2 in an MEK-1/ERK1/2-dependent manner. Activated PKC alpha, although capable of co-operating with Ets2, failed to induce transcription from the P3 promoter on its own. The Ets2/PKalpha synergistic effect was neither sensitive to PD98059 nor to Thr(72)/Ala(72) mutation. PMA neither increased the expression of Sp1 nor modulated the transcriptional activity of Sp1. However, it induced the displacement of a yet unknown factor from the Sp1-binding site, which may result in Sp1 recruitment to the promoter. Our results suggest an ERK1/2-dependent Ets2/PKC epsilon synergism to be involved in PTHrP expression in MCF-7 breast cancer cells.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous