Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Apr;68(4):267-72.
doi: 10.1016/s0952-3278(03)00005-x.

The stable analog carbocyclic TXA2 but not platelet-released TXA2 induces osteoclast-like cell formation

Affiliations

The stable analog carbocyclic TXA2 but not platelet-released TXA2 induces osteoclast-like cell formation

Reinhard Gruber et al. Prostaglandins Leukot Essent Fatty Acids. 2003 Apr.

Abstract

Thromboxan A(2) (TXA(2)) is the main product of arachidonic acid metabolism in activated platelets. Platelet-released supernatants (PRS) can induce osteoclast-like cell formation in murine bone marrow cultures via a cyclooxygenase (COX)/receptor activator of NF-kB-ligand (RANKL)-dependent pathway. Here we investigated a possible linkage between platelet-released TXA(2) and osteoclastogenesis. The stable analog of TXA(2), carbocyclic TXA(2) (CTXA(2)) can induce the formation of tartrate-resistant acid phosphatase positive multinucleated cells in murine bone marrow cultures via a RANKL-dependent pathway and requires the presence of stromal cells. Interestingly, the platelet-released instable TXA(2) does not account for osteoclastogenic effects as: (a) PRS-induced osteoclastogenesis in the presence of the TXA(2) receptor antagonist SQ29548; (b) inhibition of platelet TXA(2) synthesis by indomethacin and acetylsalicylic acid failed to decrease the osteoclastogenic potential of the corresponding supernatants; and (c) CTXA(2)-induced osteoclast-like cell formation independent of indomethacin and the selective COX-2 inhibitor NS398.

PubMed Disclaimer

Publication types

MeSH terms

Substances