Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Mar 5;41(5):870-8.
doi: 10.1016/s0735-1097(02)02935-2.

Amlodipine inhibits doxorubicin-induced apoptosis in neonatal rat cardiac myocytes

Affiliations
Free article
Comparative Study

Amlodipine inhibits doxorubicin-induced apoptosis in neonatal rat cardiac myocytes

Satoshi Yamanaka et al. J Am Coll Cardiol. .
Free article

Abstract

Objectives: We examined whether amlodipine, a calcium channel antagonist with potent antioxidant activity, inhibits doxorubicin-induced apoptosis in cultured neonatal rat cardiac myocytes.

Background: Recent studies have shown that doxorubicin induces apoptosis as well as necrosis in myocytes through generation of reactive oxygen species.

Methods: The effects of amlodipine and several other antioxidants on doxorubicin-induced oxidative stress and mitochondria-mediated apoptosis were examined.

Results: Treatment of myocytes with doxorubicin (10(-6) mol/l) for 14 h increased the number of cells with elevated peroxides, as histochemically estimated by 2',7'-dichlorofluorescin (DCF) diacetate, and the percentage of apoptotic myocytes, as estimated by Hoechst 33258 nuclear staining, compared with control myocytes (25.0 +/- 1.6% vs. 5.2 +/- 1.2%). Moreover, doxorubicin-induced myocyte apoptosis was also confirmed by annexin V-fluorescein isothiocyanate binding assay. Doxorubicin induced a reduction in myocyte adenosine 5'-triphosphate content, a loss of mitochondrial membrane potential, cytochrome c release from the mitochondria into the cytosol, and caspase-3 activation to 1.9-fold of control. Amlodipine significantly attenuated increased DCF fluorescence, inhibited the mitochondria-mediated apoptotic responses described earlier, and decreased apoptosis in the doxorubicin-treated myocytes in a dose-dependent fashion. Amlodipine at 10(-6) mol/l significantly decreased apoptosis to 15.4 +/- 0.7%, and this antiapoptotic action was more effective than that seen with other antioxidants, including probucol, ascorbic acid, and alpha-tocopherol. In contrast, the calcium channel antagonist nifedipine (10(-6) mol/l) did not inhibit apoptosis. Catalase, glutathione, and N-acetylcysteine, but not mannitol or superoxide dismutase, significantly decreased DCF fluorescence and attenuated myocyte apoptosis induced by doxorubicin to 18.7 +/- 1.2%, 19.1 +/- 1.7%, and 18.7 +/- 0.6%, respectively.

Conclusions: Amlodipine significantly inhibits doxorubicin-induced myocyte apoptosis by suppressing the mitochondrial apoptotic pathway. This effect is attributed to the antioxidant properties of amlodipine, affecting mainly hydrogen peroxide.

PubMed Disclaimer

Publication types

LinkOut - more resources