Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Mar;45(3):313-24.
doi: 10.1016/s0168-0102(02)00238-9.

Suppression of oxidative neuronal damage after transient middle cerebral artery occlusion in mice lacking interleukin-1

Affiliations
Comparative Study

Suppression of oxidative neuronal damage after transient middle cerebral artery occlusion in mice lacking interleukin-1

Hirokazu Ohtaki et al. Neurosci Res. 2003 Mar.

Abstract

Interleukin-1 (IL-1) contributes to ischemic neurodegeneration. However, the mechanisms regulating action of IL-1 are still poorly understood. In order to clear this central issue, mice that were gene deficient in IL-1alpha and beta (IL-1 KO) and wild-type mice were subjected to 1-h transient middle cerebral artery occlusion (tMCAO). Expression levels of IL-1beta and IL-1 receptor I (IL-1RI) were then examined. Generation of peroxynitrite and the expression of mRNAs for nitric oxide synthase (NOS) subtypes were also determined. Immunostaining for IL-1beta was increased from 6 h and peaked at 24 h after tMCAO in the microglia and macrophage. The immunoreactivities of IL-1RI were increased progressively in the microvasculature and neuron-like cells of the ipsilateral hemisphere. Infarct volumes were significantly lower in IL-1 KO mice compared with wild-type mice 48 h after tMCAO (P<0.01). The immunoreactivities of 3-nitro-L-tyrosine were determined in the neurons and microvasculature 24 h after tMCAO and were significantly decreased in the IL-1 KO mice compared to wild-type mice. In addition, expression levels of NOS mRNA in IL-1 KO mice were lower than that measured in wild-type mice. These results indicate that IL-1 is up-regulated and may play a role in neurodegeneration by peroxynitrite production during ischemia.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources