Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Apr;144(4):1474-80.
doi: 10.1210/en.2002-221123.

Cellular and molecular characterization of the adipose phenotype of the aromatase-deficient mouse

Affiliations

Cellular and molecular characterization of the adipose phenotype of the aromatase-deficient mouse

Marie L Misso et al. Endocrinology. 2003 Apr.

Abstract

Estrogen deficiency in the aromatase knockout (ArKO) mouse leads to the development of obesity by as early as 3 months of age, which is characterized by a marked increase in the weights of gonadal and infrarenal fat pads. Humans with natural mutations of the aromatase gene also develop a metabolic syndrome. In the present study cellular and molecular parameters were investigated in gonadal adipose tissue from 10-wk-old wild-type (WT) and ArKO female mice treated with 17beta-estradiol or placebo to identify the basis for the increase in intraabdominal obesity. Stereological examination revealed that adipocytes isolated from ArKO mice were significantly larger and more abundant than adipocytes isolated from WT mice. Upon treatment with estrogen, the volume of these adipocytes was greatly reduced, whereas the reduction in the number of adipocytes was much less pronounced. Transcriptional analysis using real-time PCR revealed concomitant changes with adipocyte volume in the levels of transcripts encoding leptin and lipoprotein lipase, whereas peroxisome proliferator-activated receptor gamma levels followed a pattern closer to that of adipocyte number. Little change was observed in levels of transcripts for factors involved in de novo fatty acid synthesis, beta-oxidation, and lipolysis, suggesting that changes in the uptake of lipids from the circulation are the main mechanisms by which estrogen regulates lipid metabolism in these mice.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources