Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Apr;21(4):428-33.
doi: 10.1038/nbt809. Epub 2003 Mar 17.

Multiherbicide tolerance conferred by AtPgp1 and apyrase overexpression in Arabidopsis thaliana

Affiliations
Comparative Study

Multiherbicide tolerance conferred by AtPgp1 and apyrase overexpression in Arabidopsis thaliana

Brian Windsor et al. Nat Biotechnol. 2003 Apr.

Abstract

Herbicide resistance is an important trait often introduced into crop plants. Mechanisms of resistance can involve a mutant target protein that is unaffected by the herbicide, or metabolic detoxification or degradation of the herbicide. Recently, we showed that overexpression in Arabidopsis thaliana of either psNTP9, the garden pea apyrase gene, or AtPgp1, the A. thaliana homolog of the plant multidrug resistance (MDR) gene, enabled A. thaliana to germinate on the toxin cycloheximide and to grow better on toxic levels of the plant hormone N6-[2-isopentyl]adenine (2iP). Here we report that overexpression of either MDR or apyrase proteins resulted in increased resistance to herbicides from different chemical classes. Apyrase inhibition by small molecule inhibitors reversed this resistance. Treatment of untransformed plants with an apyrase inhibitor increased their sensitivity to the same herbicides. These results indicate that the genes may be involved in a resistance mechanism relating to decreased retention or increased active efflux of herbicide from the plant cell.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources