Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Feb;36(1):1-69.
doi: 10.1017/s0033583502003864.

Helicase mechanisms and the coupling of helicases within macromolecular machines. Part II: Integration of helicases into cellular processes

Affiliations
Review

Helicase mechanisms and the coupling of helicases within macromolecular machines. Part II: Integration of helicases into cellular processes

Emmanuelle Delagoutte et al. Q Rev Biophys. 2003 Feb.

Abstract

In Part I of this review [Delagoutte & von Hippel, Quarterly Reviews of Biophysics (2002) 35, 431-478] we summarized what is known about the properties, mechanisms, and structures of the various helicases that catalyze the unwinding of double-stranded nucleic acids. Here, in Part II, we consider these helicases as tightly integrated (or coupled) components of the various macromolecular machines within which they operate. The biological processes that are considered explicitly include DNA replication, recombination, and nucleotide excision repair, as well as RNA transcription and splicing. We discuss the activities of the constituent helicases (and their protein partners) in the assembly (or loading) of the relevant complex onto (and into) the specific nucleic acid sites at which the actions of the helicase-containing complexes are to be initiated, the mechanisms by which the helicases (and the complexes) translocate along the nucleic acids in discharging their functions, and the reactions that are used to terminate the translocation of the helicase-containing complexes at specific sites within the nucleic acid 'substrate'. We emerge with several specific descriptions of how helicases function within the above processes of genetic expression which, we hope, can serve as paradigms for considering how helicases may also be coupled and function within other macromolecular machines.

PubMed Disclaimer

Publication types

MeSH terms