Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Mar-Apr;14(2):412-9.
doi: 10.1021/bc020056d.

Bioinspired pH-responsive polymers for the intracellular delivery of biomolecular drugs

Affiliations

Bioinspired pH-responsive polymers for the intracellular delivery of biomolecular drugs

Niren Murthy et al. Bioconjug Chem. 2003 Mar-Apr.

Abstract

The biotechnology and pharmaceutical industries have developed a wide variety of potential therapeutics based on the molecules of biology: DNA, RNA, and proteins. While these therapeutics have tremendous potential, effectively formulating and delivering them have also been a widely recognized challenge. A variety of viruses and toxins have evolved multi-functional biomolecules to solve this problem by directing cellular uptake and enhancing biomolecular transport to the cytoplasm from the low pH endosomal compartment. In the study reported here, we have designed and synthesized bio-inspired, pH-responsive polymeric carriers, which we call "encrypted polymers", that mimic the multi-functional design of biology. These encrypted polymers target and direct cellular uptake, as well as enhance cytosolic delivery by disrupting endosomal membranes in a pH-dependent fashion. We show that the encrypted polymeric carriers significantly enhance the delivery of oligonucleotides and peptides to the cytoplasm of cultured macrophages, demonstrating the potential of this approach for delivery of biotherapeutics and vaccines.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources