Gallium-67 scintigraphy: a cornerstone in functional imaging of lymphoma
- PMID: 12644887
- DOI: 10.1007/s00259-003-1164-7
Gallium-67 scintigraphy: a cornerstone in functional imaging of lymphoma
Abstract
Until recently, gallium-67 scintigraphy (GS) has been the best available functional imaging modality for evaluating patients with non-Hodgkin's lymphoma (NHL) and Hodgkin's disease (HD). The diagnostic accuracy of GS in detecting lymphoma is based on optimisation of the imaging protocol, knowledge of potential physiological and benign sites of (67)Ga uptake, and the Ga avidity characteristics of the individual lymphoma. As (67)Ga is a tumour viability agent, the role of GS is primarily at follow-up. A residual mass persisting on CT after treatment poses a common clinical dilemma: it may indicate the presence of viable lymphoma, which requires further treatment, or it can be benign, consisting of only fibrotic and necrotic tissues. GS can successfully differentiate between these conditions. Routine follow-up with GS may allow early diagnosis of recurrence and early institution of treatment. Reversion of a positive GS to a negative test, and the rapidity with which this occurs has a high predictive value for the outcome of the individual patient. Lymphoma showing a normal GS early during treatment has a better prognosis than lymphoma with persistence of pathological findings. Other tumour-seeking single-photon emitting agents, such as thallium-201, technetium-99m methoxyisobutylisonitrile and indium-111 octreotide, have been investigated in lymphoma, primarily as an alternative to GS in specific clinical settings, but are of limited value. The role of radioimmunoscintigraphy is gaining importance in conjunction with radioimmunotherapy. Fluorine-18 fluorodeoxyglucose (FDG) imaging of lymphoma using either dedicated or camera-based PET systems is gradually replacing GS for assessment of lymphoma. FDG overcomes some of the limitations of GS while sharing its tumour viability characteristics. The extensive clinical knowledge and experience accumulated over three decades with GS in lymphoma provides a solid background as well as a model for the assessment of new functional imaging techniques.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials
