Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002;4(4):E25.
doi: 10.1208/ps040425.

Which concentration of the inhibitor should be used to predict in vivo drug interactions from in vitro data?

Affiliations

Which concentration of the inhibitor should be used to predict in vivo drug interactions from in vitro data?

Kiyomi Ito et al. AAPS PharmSci. 2002.

Abstract

When the metabolism of a drug is competitively or noncompetitively inhibited by another drug, the degree of in vivo interaction can be evaluated from the [I]u/Ki ratio, where [I]u is the unbound concentration around the enzyme and Ki is the inhibition constant of the inhibitor. In the present study, we evaluated the metabolic inhibition potential of drugs known to be inhibitors or substrates of cytochrome P450 by estimating their [I]u/Ki ratio using literature data. The maximum concentration of the inhibitor in the circulating blood ([I]max), its maximum unbound concentration in the circulating blood ([I]max,u), and its maximum unbound concentration at the inlet to the liver ([I]in,max,u) were used as [I]u, and the results were compared with each other. In order to calculate the [I]u/Ki ratios, the pharmacokinetic parameters of each drug were obtained from the literature, together with their reported Ki values determined in in vitro studies using human liver microsomes. For most of the drugs with a calculated [I]in,max,u/Ki ratio less than 0.25, which applied to about half of the drugs investigated, no in vivo interactions had been reported or "no interaction" was reported in clinical studies. In contrast, the [I]max,u/Ki and [I]max/Ki ratio was calculated to be less than 0.25 for about 90% and 65% of the drugs, respectively, and more than a 1.25-fold increase was reported in the area under the concentration-time curve of the co-administered drug for about 30% of such drugs. These findings indicate that the possibility of underestimation of in vivo interactions (possibility of false-negative prediction) is greater when [I]max,u or [I]max values are used compared with using [I]in,max,u values.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Ito K, Iwatsubo T, Kanamitsu S, Ueda K, Suzuki H, Sugiyama Y. Prediction of pharmacokinetic alterations caused by drug-drug interactions. Pharmacol Rev. 1998;50:387–411. - PubMed
    1. Lin JH, Lu AYH. Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokin. 1998;35:361–390. doi: 10.2165/00003088-199835050-00003. - DOI - PubMed
    1. Bertz RJ, Granneman GR. Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokin. 1997;32:210–258. - PubMed
    1. Kanamitsu S, Ito K, Sugiyama Y. Quantitative prediction of in vivo drug-drug interactions from in vitro data based on physiological pharmacokinetics: use of maximum unbound concentration of inhibitor at the inlet to the liver. Pharm Res. 2000;17:336–343. doi: 10.1023/A:1007509324428. - DOI - PubMed
    1. Ito K, Iwatsubo T, Kanamitsu S, Nakajima Y, Sugiyama Y. Quantitative prediction of in vivo drug clearance and drug interactions from in vitro data on metabolism together with binding and transport. Annu Rev Pharmacol Toxicol. 1998;38:461–499. doi: 10.1146/annurev.pharmtox.38.1.461. - DOI - PubMed

Substances

LinkOut - more resources