Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Feb;40(2):133-40.
doi: 10.1016/s1537-1891(03)00003-x.

Ventrally emigrating neural tube cells contribute to the normal development of heart and great vessels

Affiliations

Ventrally emigrating neural tube cells contribute to the normal development of heart and great vessels

M M Ali et al. Vascul Pharmacol. 2003 Feb.

Abstract

We investigated the contributions of a recently described population of neural tube cells, which participates in the development of a variety of tissues, to the development of the heart and great vessels. These cells, termed as the ventrally emigrating neural tube (VENT) cells, originate in the ventral part of the hindbrain neural tube, emigrate at the site of attachment of the cranial nerves, and populate their respective target tissues. VENT cells of the caudal hindbrain neural tube at the level of the vagus nerve, which were previously reported to migrate into the heart, were tagged with replication-deficient retroviruses containing the LacZ gene in chick embryos, after the emigration of neural crest from this region. In older embryos, VENT cells were detected in a variety of locations including the ventricles, atria, their septa, aorticopulmonary septum, and great vessels of the heart. Immunostaining with a specific marker revealed that VENT cells differentiated into smooth muscle cells of great vessels. Differentiation of VENT cells into cardiac muscle cells was reported previously. Extirpation of the VENT cells prior to their departure from the neural tube resulted in some common cardiovascular malformations: thin-walled ventricles and atria, ventricular and atrial septal defects, persistent truncus arteriosus, and stenosis of the great vessels. These results suggest that a novel population of neural tube cells also contributes to the normal development of the heart and great vessels. Thus, the heart and great vessels develop from three sources of cells: mesoderm, neural crest, and VENT cells.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources