Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Mar 10;284(1):111-21.
doi: 10.1016/s0014-4827(02)00096-4.

Ligand-independent oncogenic signaling by the epidermal growth factor receptor: v-ErbB as a paradigm

Affiliations
Review

Ligand-independent oncogenic signaling by the epidermal growth factor receptor: v-ErbB as a paradigm

Julie L Boerner et al. Exp Cell Res. .

Abstract

Relay of information from the extracellular environment into the cell often results from a peptide growth factor binding to its cognate cell surface receptor; this event is an integral mechanism by which many cellular functions occur, including cell growth, motility, and survival. In recent years, however, this requirement for ligand binding has been shown to be surpassed by several distinct mechanisms, including cell surface receptor cross-talk (e.g., between epidermal growth factor receptor [EGFR] and G-coupled receptors), receptor-extracellular matrix interactions (e.g., EGFR: integrin complexes), and finally by structural mutations within the receptor itself. While all of these pathways result in so-called ligand-independent signaling by the EGF receptor, to date, only structural mutations in the receptor have been shown to result in qualitative changes in downstream targets of the receptor, which specifically result in oncogenic signaling, transformation, and tumorigenicity. In this review, we describe aspects of the known signaling properties of the retroviral oncogene v-ErbB as a model of ligand-independent oncogenic signaling, and compare these properties to results emerging from ongoing studies on structurally related EGF receptor mutants originally identified in human tumors. A better understanding of the signaling pathways used by these uniquely oncogenic receptor tyrosine kinase mutants may ultimately reveal new targets for the development of novel therapeutics selective for the inhibition of tumor cell growth.

PubMed Disclaimer

Publication types