Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2003 May;25(4):321-7.
doi: 10.1016/s1350-4533(02)00249-7.

Prediction of response to incision using the mutual information of electroencephalograms during anaesthesia

Affiliations
Clinical Trial

Prediction of response to incision using the mutual information of electroencephalograms during anaesthesia

L Huang et al. Med Eng Phys. 2003 May.

Abstract

This paper presents a new approach to predict response during isoflurane anaesthesia by using mutual information (MI) time series of electroencephalograms (EEGs) and their complexity analysis. The MI between four lead electrodes was first computed using the EEG time series. The Lempel-Ziv complexity measures, C(n)s, were extracted from the MI time series. Prediction was made by means of artificial neural network (ANN). From 98 consenting patient experiments, 98 distinct EEG recordings were collected prior to incision during isoflurane anaesthesia of different levels. During and after skin incision, each patient was observed carefully for 2 min to detect subsequent responses (purposeful movement, changes in hemodynamic parameters and respiratory pattern) and then the EEG was labelled as 0.0 for responder or as 1.0 for non-responder. Training and testing the ANN used the 'drop-one-patient' method. The prediction was tested by monitoring the response to incision and the result given by the ANN. The system was able to correctly classify purposeful response in average accuracy of 91.84% of the cases. The results showed that the method has a better performance than other methods, such as spectral edge frequency, median frequency, and bispectral analysis. This method is computationally fast and acceptable real-time clinical performance was obtained.

PubMed Disclaimer

LinkOut - more resources