Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Mar;17(5):991-1005.
doi: 10.1046/j.1460-9568.2003.02516.x.

Delayed peripheral nerve regeneration and central nervous system collateral sprouting in leucocyte common antigen-related protein tyrosine phosphatase-deficient mice

Affiliations

Delayed peripheral nerve regeneration and central nervous system collateral sprouting in leucocyte common antigen-related protein tyrosine phosphatase-deficient mice

C E E M Van der Zee et al. Eur J Neurosci. 2003 Mar.

Abstract

Cell adhesion molecule-like receptor-type protein tyrosine phosphatases have been shown to be important for neurite outgrowth and neural development in several animal models. We have previously reported that in leucocyte common antigen-related (LAR) phosphatase deficient (LAR-deltaP) mice the number and size of basal forebrain cholinergic neurons, and their innervation of the hippocampal area, is reduced. In this study we compared the sprouting response of LAR-deficient and wildtype neurons in a peripheral and a central nervous system lesion model. Following sciatic nerve crush lesion, LAR-deltaP mice showed a delayed recovery of sensory, but not of motor, nerve function. In line with this, neurofilament-200 immunostaining revealed a significant reduction in the number of newly outgrowing nerve sprouts in LAR-deltaP animals. Morphometric analysis indicated decreased axonal areas in regenerating LAR-deltaP nerves when compared to wildtypes. Nonlesioned nerves in wildtype and LAR-deltaP mice did not differ regarding myelin and axon areas. Entorhinal cortex lesion resulted in collateral sprouting of septohippocampal cholinergic fibres into the dentate gyrus outer molecular layer in both genotype groups. However, LAR-deltaP mice demonstrated less increase in acetylcholinesterase density and fibre number at several time points following the lesion, indicating a delayed collateral sprouting response. Interestingly, a lesion-induced reduction in number of (septo-entorhinal) basal forebrain choline acetyltransferase-positive neurons occurred in both groups, whereas in LAR-deltaP mice the average cell body size was reduced as well. Thus, regenerative and collateral sprouting is significantly delayed in LAR-deficient mice, reflecting an important facilitative role for LAR in peripheral and central nervous system axonal outgrowth.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources