Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Mar 25;107(11):1532-8.
doi: 10.1161/01.cir.0000055324.34758.32.

Small GTP-binding protein Rac is an essential mediator of vascular endothelial growth factor-induced endothelial fenestrations and vascular permeability

Affiliations

Small GTP-binding protein Rac is an essential mediator of vascular endothelial growth factor-induced endothelial fenestrations and vascular permeability

Anna Eriksson et al. Circulation. .

Abstract

Background: Vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) induces both angiogenesis and vascular permeability. Although its angiogenic activity has been well characterized, the signaling pathways of VEGF-induced permeability remain poorly understood.

Methods and results: Using the mouse corneal micropocket assay, Miles assay, and a combination of cytochemical, electron microscopic, and biochemical assays, we demonstrate that VEGF-induced vascular leakage partly can be separated from its angiogenic activity. VEGF but not FGF-2 induced capillaries with a highly fenestrated endothelium, a feature linked with increased vascular permeability. A cell-permeable Rac antagonist (TAT-RacN17) converted VEGF-induced, leaky vascular plexuses into well-defined vascular networks. In addition, this Rac mutant blocked formation of VEGF-induced endothelial fenestrations and vascular permeability but only partially inhibited angiogenesis. Studies on endothelial cell cultures further revealed that VEGF stimulated phosphorylation of VEGF receptor-2 (VEGFR-2), leading to activation of Rac as well as increased phosphorylation of phospholipase Cgamma (PLCgamma), protein kinase B (Akt), endothelial nitric oxide synthase (eNOS), and extracellular regulated kinase (Erk1/2). We further found that phosphatidylinositol-3-OH kinase (PI3K) acted upstream of Rac and Akt-eNOS in VEGF/VEGFR-2 signaling.

Conclusions: Our findings indicate that the small GTP-binding protein Rac is a key component in mediation of VEGF-induced vascular permeability but less so in neovascularization. This may have conceptual implications for applying Rac antagonists in treatment and prevention of VEGF-induced vascular leakage and edema in connection with ischemic disorders.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources