Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Apr;67(4):340-6.
doi: 10.1253/circj.67.340.

Effect of pilsicainide on atrial electrophysiologic properties in the canine rapid atrial stimulation model

Affiliations
Free article

Effect of pilsicainide on atrial electrophysiologic properties in the canine rapid atrial stimulation model

Jisho Kojima et al. Circ J. 2003 Apr.
Free article

Abstract

The heterogeneous process of atrial electrical remodeling (AER) in the canine rapid atrial stimulation model has been previously reported although it has been reported that a sodium channel blocker might suppress the shortening of the atrial effective refractory period (AERP), its effect on long-term electrical remodeling is unknown. In the present study, the effect of pilsicainide on AER was evaluated. The right atrial appendage (RAA) was paced at 400 beats/min for 2 weeks. In the RAA, Bachmann's bundle (BB), the right atrium near the inferior vena cava (IVC) and in the left atrium (LA), AERP, AERP dispersion (AERPd) and the inducibility of atrial fibrillation (AF) were evaluated at several time points of the pacing phase and the recovery phase (1 week). The same protocol was performed during the administration of pilsicainide (4.5 mg/kg per day) and the parameters were compared with the controls. In the control dogs, the AERP was significantly shortened by rapid pacing at all atrial sites studied and the AERP shortening (DeltaAERP) was larger at the RAA and LA sites (p<0.03). However, pilsicainide decreased these DeltaAERPs at all 4 atrial sites. AERPd was increased during the pacing phase whereas it was decreased during the recovery phase in the control dogs. In contrast, this pacing-induced AERPd was attenuated by the administration of pilsicainide. The AF inducibility was highest at the LA site in both groups, and the inducibility was lower in the pilsicainide group than the control group at all atrial sites. During the rapid pacing phase, the ventricular heart rate was significantly lower in the pilsicainide group than the control because of intra-atrial conduction block. In a canine rapid right atrial stimulation model, pilsicainide suppressed the shortening of the AERP at all atrial sites, possibly through the improvement of the hemodynamics as well as the action of the Na - Ca exchanger.

PubMed Disclaimer

Similar articles

Cited by