Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jan;53(Pt 1):173-178.
doi: 10.1099/ijs.0.02323-0.

Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents

Affiliations

Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents

D Alazard et al. Int J Syst Evol Microbiol. 2003 Jan.

Abstract

Mesophilic, hydrogenotrophic, sulfate-reducing bacteria were isolated from a deep-sea hydrothermal chimney sample collected at 13 degrees N on the East-Pacific Rise at a depth of 2,600 m. Two strains (BL5 and H9) were found to be phylogenetically similar to Desulfovibrio profundus (similarity >99%), whereas two other strains (H1 and AM13T) were found to be phylogenetically distinct (similarity 96.4%) from Desulfovibrio zosterae, their closest relative. Strain AM13T was characterized further. It was a barophilic, Gram-negative, non-sporulating, motile, vibrio-shaped or sigmoid bacterium possessing desulfoviridin. It grew at temperatures ranging from 20 to 40 degrees C, with an optimum at 35 degrees C in the presence of 2.5% NaCl. The pH range for growth was 6.7-8.2 with an optimum around 7.8. Strain AM13T utilized H2/CO2, lactate, formate, ethanol, choline and glycerol as electron donors. Electron acceptors were sulfate, sulfite and thiosulfate, but not elemental sulfur or nitrate. The G + C content of DNA was 47 mol%. Strain AM13T (= DSM 14728T = CIP107303T) differed from D. zosterae not only phylogenetically, but also genomically (DNA-DNA reassociation value between the two bacteria was 23.8%) and phenotypically. This isolate is therefore proposed as the type strain of a novel species of the genus Desulfovibrio, Desulfovibrio hydrothermalis sp. nov.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Associated data

LinkOut - more resources