Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Jan;50(1):63-9.
doi: 10.1016/s0045-6535(02)00319-3.

Biodegradability of biofilm extracellular polymeric substances

Affiliations
Comparative Study

Biodegradability of biofilm extracellular polymeric substances

Xiaoqi Zhang et al. Chemosphere. 2003 Jan.

Abstract

This study discovered that biofilm extracellular polymeric substances (EPS) are biodegradable by their own producers and by other microorganisms when they are starved. The study was performed in a comparative fashion to examine the biodegradability of biofilm EPS by the microorganisms from the original biofilm (its own producers) and from activated sludge (other microorganisms). Four distinctive phases were observed during EPS biodegradation. In the first phase, instantaneous concentration increases of carbohydrate and protein in the test solutions were observed when EPS was added; in the second phase, easily biodegradable EPS from the added EPS was quickly utilized; in the third phase, microorganisms began to produce soluble EPS, using the minimally biodegradable EPS left from the previously added EPS; in the fourth phase, cells consumed the newly produced EPS and microbial activity gradually stopped. This study suggests that EPS can be used as a substrate, and that the EPS carbohydrate can be utilized faster than the EPS protein. The EPS utilization rates (including carbohydrate and protein) in the activated sludge suspension were greater than those in the biofilm suspension. It may take microorganisms longer to get acclimated to a new nutrient environment if they are in a starved state.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources