Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Apr 2;125(13):3799-812.
doi: 10.1021/ja028266o.

Tuning the photoinduced electron-transfer thermodynamics in 1,3,5-triaryl-2-pyrazoline fluorophores: X-ray structures, photophysical characterization, computational analysis, and in vivo evaluation

Affiliations

Tuning the photoinduced electron-transfer thermodynamics in 1,3,5-triaryl-2-pyrazoline fluorophores: X-ray structures, photophysical characterization, computational analysis, and in vivo evaluation

Christoph J Fahrni et al. J Am Chem Soc. .

Abstract

A series of donor-substituted 1,3,5-triaryl-2-pyrazoline fluorophores were structurally characterized by X-ray analysis, and their photophysical properties studied by steady-state absorption and emission spectroscopy. The photoinduced electron-transfer thermodynamics of the derivatives was estimated on the basis of the spectroscopic data and redox potentials of the fluorophores. The aryl substituents in the 1- and 3-position of the pyrazoline ring influence the photophysical properties of the fluorophores in distinctly different ways. The excited-state equilibrium energy DeltaE(00) is primarily influenced by changes of the substituent in the 1-position, whereas the reduction potential of the fluorophore is essentially determined by the 3-aryl group. Density functional calculations were used to probe the electronic structure and energy ordering of the emissive and the electron-transfer state. The results from the computational analysis agree qualitatively well with the experimental data. In addition, we have evaluated a water soluble pyrazoline derivative in vivo as a potential intracellular pH probe. Membrane permeability, low toxicity, and high quantum yield render the fluorophore attractive for biological applications.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources