A model of dengue fever
- PMID: 12657162
- PMCID: PMC153427
- DOI: 10.1186/1475-925x-2-4
A model of dengue fever
Abstract
Background: Dengue is a disease which is now endemic in more than 100 countries of Africa, America, Asia and the Western Pacific. It is transmitted to the man by mosquitoes (Aedes) and exists in two forms: Dengue Fever and Dengue Haemorrhagic Fever. The disease can be contracted by one of the four different viruses. Moreover, immunity is acquired only to the serotype contracted and a contact with a second serotype becomes more dangerous.
Methods: The present paper deals with a succession of two epidemics caused by two different viruses. The dynamics of the disease is studied by a compartmental model involving ordinary differential equations for the human and the mosquito populations.
Results: Stability of the equilibrium points is given and a simulation is carried out with different values of the parameters. The epidemic dynamics is discussed and illustration is given by figures for different values of the parameters.
Conclusion: The proposed model allows for better understanding of the disease dynamics. Environment and vaccination strategies are discussed especially in the case of the succession of two epidemics with two different viruses.
Figures




Similar articles
-
Multiple outbreaks of dengue serotype 2 in north Queensland, 2003/04.Aust N Z J Public Health. 2006 Jun;30(3):220-5. doi: 10.1111/j.1467-842x.2006.tb00861.x. Aust N Z J Public Health. 2006. PMID: 16800197
-
The global pandemic of dengue/dengue haemorrhagic fever: current status and prospects for the future.Ann Acad Med Singap. 1998 Mar;27(2):227-34. Ann Acad Med Singap. 1998. PMID: 9663316 Review.
-
Stochastic dynamics of dengue epidemics.Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jan;87(1):012709. doi: 10.1103/PhysRevE.87.012709. Epub 2013 Jan 17. Phys Rev E Stat Nonlin Soft Matter Phys. 2013. PMID: 23410361
-
Competitive exclusion in a vector-host model for the dengue fever.J Math Biol. 1997 May;35(5):523-44. doi: 10.1007/s002850050064. J Math Biol. 1997. PMID: 9145954
-
Dengue fever in the Western Hemisphere.Clin Lab Sci. 2003 Winter;16(1):34-8. Clin Lab Sci. 2003. PMID: 12587656 Review.
Cited by
-
Optimal control analysis of vector-host model with saturated treatment.Eur Phys J Plus. 2020;135(10):839. doi: 10.1140/epjp/s13360-020-00855-1. Epub 2020 Oct 16. Eur Phys J Plus. 2020. PMID: 33101826 Free PMC article.
-
Determining dengue infection risk in the Colombo district of Sri Lanka by inferencing the genetic parameters of Aedes mosquitoes.BMC Infect Dis. 2024 Sep 9;24(1):944. doi: 10.1186/s12879-024-09878-w. BMC Infect Dis. 2024. PMID: 39251932 Free PMC article.
-
Mathematical modeling in perspective of vector-borne viral infections: a review.Beni Suef Univ J Basic Appl Sci. 2022;11(1):102. doi: 10.1186/s43088-022-00282-4. Epub 2022 Aug 19. Beni Suef Univ J Basic Appl Sci. 2022. PMID: 36000145 Free PMC article. Review.
-
A climate-driven mechanistic population model of Aedes albopictus with diapause.Parasit Vectors. 2016 Mar 24;9:175. doi: 10.1186/s13071-016-1448-y. Parasit Vectors. 2016. PMID: 27009065 Free PMC article.
-
Is temperature the main cause of dengue rise in non-endemic countries? The case of Argentina.Int J Health Geogr. 2012 Jul 6;11:26. doi: 10.1186/1476-072X-11-26. Int J Health Geogr. 2012. PMID: 22768874 Free PMC article.
References
-
- Derouich M. Modélisation et Simulation de modèles avec et sans structure d'âge : Application au diabète et à la fièvre dengue. PhD thesis Faculty of Sciences, Oujda Morocco. 2001.
-
- Sesser S. Plague proportion. The Asian Wall Street Journal 2002. August 30 Septembre 1.
-
- Dengue and Dengue Haemorrhagic Fever http://www.who.int/inf.fs/en/fact117.html - PubMed
-
- Hethcote HW. The Mathematics of Infectious Diseases. SIAM review. 2000;42:599–653.
-
- Newton EA, Reiter P. A model of the transmission of dengue fever with an evaluation of the impact of ultra-low volume (ULV) Insecticide applications on dengue epidemics. Am J Trop Med Hyg. 1992;47:709–720. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical