Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 May 30;278(22):20413-9.
doi: 10.1074/jbc.M302108200. Epub 2003 Mar 26.

Agonist-induced coordinated trafficking of functionally related transport proteins for water and ions in cholangiocytes

Affiliations
Free article

Agonist-induced coordinated trafficking of functionally related transport proteins for water and ions in cholangiocytes

Pamela S Tietz et al. J Biol Chem. .
Free article

Abstract

We previously proposed that ductal bile formation is regulated by secretin-responsive relocation of aquaporin 1 (AQP1), a water-selective channel protein, from an intracellular vesicular compartment to the apical membrane of cholangiocytes. In this study, we immunoisolated AQP1-containing vesicles from cholangiocytes prepared from rat liver; quantitative immunoblotting revealed enrichment in these vesicles of not only AQP1 but also cystic fibrosis transmembrane regulator (CFTR) and AE2, a Cl- channel and a Cl-/HCO3- exchanger, respectively. Dual labeled immunogold electron microscopy of cultured polarized mouse cholangiocytes showed significant colocalization of AQP1, CFTR, and AE2 in an intracellular vesicular compartment; exposure of cholangiocytes to dibutyryl-cAMP (100 microm) resulted in co-redistribution of all three proteins to the apical cholangiocyte plasma membrane. After administration of secretin to rats in vivo, bile flow increased, and AQP1, CFTR, and AE2 co-redistributed to the apical cholangiocyte membrane; both events were blocked by pharmacologic disassembly of microtubules. Based on these in vitro and in vivo observations utilizing independent and complementary approaches, we propose that cholangiocytes contain an organelle that sequesters functionally related proteins that can account for ion-driven water transport, that this organelle moves to the apical cholangiocyte membrane in response to secretory agonists, and that these events account for ductal bile secretion at a molecular level.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources