Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jun;3(3):219-231.
doi: 10.1016/s1525-5050(02)00029-x.

The role of subcortical structures in human epilepsy

Affiliations

The role of subcortical structures in human epilepsy

Andrew D. Norden et al. Epilepsy Behav. 2002 Jun.

Abstract

Like normal cerebral function, epileptic seizures involve widespread network interactions between cortical and subcortical structures. Although the cortex is often emphasized as the site of seizure origin, accumulating evidence points to a crucial role for subcortical structures in behavioral manifestations, propagation, and, in some cases, initiation of epileptic seizures. Extensive previous studies have shown the importance of subcortical structures in animal seizure models, but corresponding human studies have been relatively few. We review the existing evidence supporting the importance of the thalamus, basal ganglia, hypothalamus, cerebellum, and brain stem in human epilepsy. We also propose a "network inhibition hypothesis" through which focal cortical seizures disrupt function in subcortical structures (such as the medial diencephalon and pontomesencephalic reticular formation), leading secondarily to widespread inhibition of nonseizing cortical regions, which may in turn be responsible for behavioral manifestations such as loss of consciousness during complex partial seizures.

PubMed Disclaimer

LinkOut - more resources