Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Apr 15;107(14):1901-5.
doi: 10.1161/01.CIR.0000057973.99140.5A. Epub 2003 Mar 10.

Role of nitric oxide in the regulation of cerebral blood flow in humans: chemoregulation versus mechanoregulation

Affiliations

Role of nitric oxide in the regulation of cerebral blood flow in humans: chemoregulation versus mechanoregulation

Shahar Lavi et al. Circulation. .

Abstract

Background: From animal studies it emerged that nitric oxide is important for the modulation of CO2-mediated cerebral blood flow (CBF chemoregulation) but not for the pressor-dependent mechanism (mechanoregulation). This hypothesis was tested in 18 healthy subjects.

Methods and results: Peak velocity (PV), diastolic velocity (DV), and mean velocity (MV) were measured by transcranial Doppler of the middle cerebral artery. Chemoregulation was assessed during normocapnia, hypocapnia, and after inhaled mixture of 95% O2+5% CO2. Mechanoregulation was evaluated by incremental doses of phenylephrine. Measurements were repeated during infusion of sodium nitroprusside (SNP). Regional cerebrovascular resistance (CVR) was calculated as mean blood pressure (BP)/MV. SNP infusion decreased mean BP by 7 mm Hg and CVR decreased from 1.38+/-0.08 to 1.29+/-0.09 mm Hg/cm x s(-1); P=0.01, resulting in unaffected CBF. Phenylephrine (25 to 250 microg) caused a similar increase in BP in a dose-response fashion before and during SNP infusion. Despite the increments in BP and CVR, CBF remained unaffected. During hyperventilation (end-tidal CO2 approximately 24 mm Hg), CVR increased by 75+/-3% and PV and DV decreased by 27+/-2% and 43+/-2%, respectively (P<0.001 for all). SNP infusion blunted the vasoconstrictive effect of hypocapnia; CVR increased only by 57+/-5%, and PV and DV decreased by 23+/-2% and 35+/-3%, respectively, (P<0.05 for all). Similarly, SNP augmented the vasodilatory effect of hypercapnia.

Conclusions: Exogenous nitric oxide donor affects the basal cerebral vascular tone without affecting the CBF mechanoregulation. However, it selectively affects only the chemoregulatory mechanism (CO2-dependent). Thus, the CO2-NO axis is a cardinal pathway for CBF regulation in humans.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources