Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jun 6;278(23):21113-23.
doi: 10.1074/jbc.M211304200. Epub 2003 Mar 28.

Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions

Affiliations

Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions

Hector Peinado et al. J Biol Chem. .

Abstract

The Snail transcription factor has been described recently as a strong repressor of E-cadherin in epithelial cell lines, where its stable expression leads to the loss of E-cadherin expression and induces epithelial-mesenchymal transitions and an invasive phenotype. The mechanisms regulating Snail expression in development and tumor progression are not yet known. We show here that transforming growth factor beta-1 (TGFbeta1) induces Snail expression in Madin-Darby canine kidney cells and triggers epithelial-mesenchymal transitions by a mechanism dependent on the MAPK signaling pathway. Furthermore, TGFbeta1 induces the activity of Snail promoter, whereas fibroblast growth factor-2 has a milder effect but cooperates with TGFbeta1 in the induction of Snail promoter. Interestingly, TGFbeta1-mediated induction of Snail promoter is blocked by a dominant negative form of H-Ras (N17Ras), whereas oncogenic H-Ras (V12Ras) induces Snail promoter activity and synergistically cooperates with TGFbeta1. The effects of TGFbeta1 on Snail promoter are dependent of MEK1/2 activity but are apparently independent of Smad4 activity. In addition, H-Ras-mediated induction of Snail promoter, alone or in the presence of TGFbeta1, depends on both MAPK and phosphatidylinositol 3-kinase activities. These data support that MAPK and phosphatidylinositol 3-kinase signaling pathways are implicated in TGFbeta1-mediated induction of Snail promoter, probably through Ras activation and its downstream effectors.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources